Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424189

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and has infected an estimated 10% of the global population in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of a specific set of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Subject(s)
Coronavirus Infections , COVID-19
2.
- The COVID Moonshot Consortium; Hagit Achdout; Anthony Aimon; Elad Bar-David; Haim Barr; Amir Ben-Shmuel; James Bennett; Melissa L Bobby; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Emma Cattermole; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Michael Fairhead; Daren Fearon; Oleg Fedorov; Matteo Ferla; Holly Foster; Richard Foster; Ronen Gabizon; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Marian Gorichko; Tyler Gorrie-Stone; Edward J Griffen; Jag Heer; Michelle Hill; Sam Horrell; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Eric Jnoff; Tobias John; Anastassia L. Kantsadi; Peter W. Kenny; John L. Kiappes; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Albert Lee; Bruce A. Lefker; Haim Levy; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Sharon Melamed; Oleg Michurin; Halina Mikolajek; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Jose Brandao Neto; Vladas Oleinikovas; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Matthew C. Robinson; Ralph P. Robinson; Dominic Rufa; Christopher Schofield; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Assa Sittner; Rachael Skyner; Adam Smalley; Mihaela D. Smilova; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Andrew Thompson; Warren Thompson; Susana Tomasio; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Annette von Delft; Frank von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.339317

ABSTRACT

Herein we provide a living summary of the data generated during the COVID Moonshot project focused on the development of SARS-CoV-2 main protease (Mpro) inhibitors. Our approach uniquely combines crowdsourced medicinal chemistry insights with high throughput crystallography, exascale computational chemistry infrastructure for simulations, and machine learning in triaging designs and predicting synthetic routes. This manuscript describes our methodologies leading to both covalent and non-covalent inhibitors displaying protease IC50 values under 150 nM and viral inhibition under 5 uM in multiple different viral replication assays. Furthermore, we provide over 200 crystal structures of fragment-like and lead-like molecules in complex with the main protease. Over 1000 synthesized and ordered compounds are also reported with the corresponding activity in Mpro enzymatic assays using two different experimental setups. The data referenced in this document will be continually updated to reflect the current experimental progress of the COVID Moonshot project, and serves as a citable reference for ensuing publications. All of the generated data is open to other researchers who may find it of use.

3.
Xun Chen; Matteo Gentili; Nir Hacohen; Aviv Regev; Haim Barr; Amir Ben-Shmuel; James Bennett; Melissa L Bobby; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Emma Cattermole; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Michael Fairhead; Daren Fearon; Oleg Fedorov; Matteo Ferla; Holly Foster; Richard Foster; Ronen Gabizon; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Marian Gorichko; Tyler Gorrie-Stone; Edward J Griffen; Jag Heer; Michelle Hill; Sam Horrell; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Eric Jnoff; Tobias John; Anastassia L. Kantsadi; Peter W. Kenny; John L. Kiappes; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Albert Lee; Bruce A. Lefker; Haim Levy; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Sharon Melamed; Oleg Michurin; Halina Mikolajek; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Jose Brandao Neto; Vladas Oleinikovas; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Matthew C. Robinson; Ralph P. Robinson; Dominic Rufa; Christopher Schofield; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Assa Sittner; Rachael Skyner; Adam Smalley; Mihaela D. Smilova; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Andrew Thompson; Warren Thompson; Susana Tomasio; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Annette von Delft; Frank von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361287

ABSTRACT

Antibody engineering technologies face increasing demands for speed, reliability and scale. We developed CeVICA, a cell-free antibody engineering platform that integrates a novel generation method and design for camelid heavy-chain antibody VHH domain-based synthetic libraries, optimized in vitro selection based on ribosome display and a computational pipeline for binder prediction based on CDR-directed clustering. We applied CeVICA to engineer antibodies against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike proteins and identified >800 predicted binder families. Among 14 experimentally-tested binders, 6 showed inhibition of pseudotyped virus infection. Antibody affinity maturation further increased binding affinity and potency of inhibition. Additionally, the unique capability of CeVICA for efficient and comprehensive binder prediction allowed retrospective validation of the fitness of our synthetic VHH library design and revealed direction for future refinement. CeVICA offers an integrated solution to rapid generation of divergent synthetic antibodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel antibody generation.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections
4.
Saumyabrata Mazumder; Ruchir Rastogi; Avinash Undale; Kajal Arora; Nupur Mehrotra Arora; Biswa Pratim Das Purkayastha; Dilip Kumar; Abyson Joseph; Bhupesh Mali; Vidya Bhushan Arya; Sriganesh Kalyanaraman; Abhishek Mukherjee; Aditi Gupta; Swaroop Potdar; Sourav Singha Roy; Deepak Parashar; Jeny Paliwal; Sudhir Kumar Singh; Aelia Naqvi; Apoorva Srivastava; Manglesh Kumar Singh; Devanand Kumar; Sarthi Bansal; Satabdi Rautray; Indrajeet Singh; Pankaj Fengade; Bivekanand Kumar; Manish Saini; Kshipra Jain; Reeshu Gupta; Prabuddha K Kundu; Matteo Ferla; Holly Foster; Richard Foster; Ronen Gabizon; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Marian Gorichko; Tyler Gorrie-Stone; Edward J Griffen; Jag Heer; Michelle Hill; Sam Horrell; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Eric Jnoff; Tobias John; Anastassia L. Kantsadi; Peter W. Kenny; John L. Kiappes; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Albert Lee; Bruce A. Lefker; Haim Levy; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Sharon Melamed; Oleg Michurin; Halina Mikolajek; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Jose Brandao Neto; Vladas Oleinikovas; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Matthew C. Robinson; Ralph P. Robinson; Dominic Rufa; Christopher Schofield; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Assa Sittner; Rachael Skyner; Adam Smalley; Mihaela D. Smilova; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Andrew Thompson; Warren Thompson; Susana Tomasio; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Annette von Delft; Frank von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.30.360115

ABSTRACT

The rapid development of safe and effective vaccines against SARS CoV-2 is the need of the hour for the coronavirus outbreak. Here, we have developed PRAK-03202, the world's first triple antigen VLP vaccine candidate in a highly characterized S. cerevisiae-based D-Crypt platform, which induced SARS CoV-2 specific neutralizing antibodies in BALB/c mice. Immunizations using three different doses of PRAK-03202 induces antigen specific (Spike, envelope and membrane proteins) humoral response and neutralizing potential. PBMCs from convalescent patients, when exposed to PRAK-03202, showed lymphocyte proliferation and elevated IFN-{gamma} levels suggestive of conservation of epitopes and induction of T helper 1 (Th1)-biased cellular immune responses. These data support the clinical development and testing of PRAK-03202 for use in humans.

5.
Kathryn Kistler; Trevor Bedford; Avinash Undale; Kajal Arora; Nupur Mehrotra Arora; Biswa Pratim Das Purkayastha; Dilip Kumar; Abyson Joseph; Bhupesh Mali; Vidya Bhushan Arya; Sriganesh Kalyanaraman; Abhishek Mukherjee; Aditi Gupta; Swaroop Potdar; Sourav Singha Roy; Deepak Parashar; Jeny Paliwal; Sudhir Kumar Singh; Aelia Naqvi; Apoorva Srivastava; Manglesh Kumar Singh; Devanand Kumar; Sarthi Bansal; Satabdi Rautray; Indrajeet Singh; Pankaj Fengade; Bivekanand Kumar; Manish Saini; Kshipra Jain; Reeshu Gupta; Prabuddha K Kundu; Matteo Ferla; Holly Foster; Richard Foster; Ronen Gabizon; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Marian Gorichko; Tyler Gorrie-Stone; Edward J Griffen; Jag Heer; Michelle Hill; Sam Horrell; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Eric Jnoff; Tobias John; Anastassia L. Kantsadi; Peter W. Kenny; John L. Kiappes; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Albert Lee; Bruce A. Lefker; Haim Levy; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Sharon Melamed; Oleg Michurin; Halina Mikolajek; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Jose Brandao Neto; Vladas Oleinikovas; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Matthew C. Robinson; Ralph P. Robinson; Dominic Rufa; Christopher Schofield; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Assa Sittner; Rachael Skyner; Adam Smalley; Mihaela D. Smilova; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Andrew Thompson; Warren Thompson; Susana Tomasio; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Annette von Delft; Frank von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.30.352914

ABSTRACT

Seasonal coronaviruses (OC43, 229E, NL63 and HKU1) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. It is not known to what extent reinfection by these viruses is due to waning immune memory or antigenic drift of the viruses. Here, we address the influence of antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein that are exposed to human humoral immunity. This suggests that reinfection may be due, in part, to positively-selected genetic changes in these viruses that enable them to escape recognition by the immune system. It is possible that, as with seasonal influenza, these adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a vaccine made against them.


Subject(s)
Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL